Computational model of dynein-dependent self-organization of microtubule asters.

نویسندگان

  • E N Cytrynbaum
  • V Rodionov
  • A Mogilner
چکیده

Polar arrays of microtubules play many important roles in the cell. Normally, such arrays are organized by a centrosome anchoring the minus ends of the microtubules, while the plus ends extend to the cell periphery. However, ensembles of molecular motors and microtubules also demonstrate the ability to self-organize into polar arrays. We use quantitative modeling to analyze the self-organization of microtubule asters and the aggregation of motor-driven pigment granules in fragments of fish melanophore cells. The model is based on the observation that microtubules are immobile and treadmilling, and on the experimental evidence that cytoplasmic dynein motors associated with granules have the ability to nucleate MTs and attenuate their minus-end dynamics. The model explains the observed sequence of events as follows. Initially, pigment granules driven by cytoplasmic dynein motors aggregate to local clusters of microtubule minus ends. The pigment aggregates then nucleate microtubules with plus ends growing toward the fragment boundary, while the minus ends stay transiently in the aggregates. Microtubules emerging from one aggregate compete with any aggregates they encounter leading to the gradual formation of a single aggregate. Simultaneously, a positive feedback mechanism drives the formation of a single MT aster--a single loose aggregate leads to focused MT nucleation and hence a tighter aggregate which stabilizes MT minus ends more effectively leading to aster formation. We translate the model assumptions based on experimental measurements into mathematical equations. The model analysis and computer simulations successfully reproduce the observed pathways of pigment aggregation and microtubule aster self-organization. We test the model predictions by observing the self-organization in fragments of various sizes and in bi-lobed fragments. The model provides stringent constraints on rates and concentrations describing microtubule and motor dynamics, and sheds light on the role of polymer dynamics and polymer-motor interactions in cytoskeletal organization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The N-terminal coiled-coil of Ndel1 is a regulated scaffold that recruits LIS1 to dynein

Ndel1 has been implicated in a variety of dynein-related processes, but its specific function is unclear. Here we describe an experimental approach to evaluate a role of Ndel1 in dynein-dependent microtubule self-organization using Ran-mediated asters in meiotic Xenopus egg extracts. We demonstrate that extracts depleted of Ndel1 are unable to form asters and that this defect can be rescued by ...

متن کامل

Computational Biology Seminar

Sep 26 Alex Mogilner, UC Davis Self-organizing microtubule asters in mitosis Mitosis is the process of segregation of chromosomes before cell division. This phenomenon is based on self-assembling molecular machine called mitotic spindle. The spindle consists of two asters made of microtubules, dynamic polymers that grow and shrink rapidly and repeatedly probing space and searching for the chrom...

متن کامل

A Motor-Gradient and Clustering Model of the Centripetal Motility of MTOCs in Meiosis I of Mouse Oocytes

Asters nucleated by Microtubule (MT) organizing centers (MTOCs) converge on chromosomes during spindle assembly in mouse oocytes undergoing meiosis I. Time-lapse imaging suggests that this centripetal motion is driven by a biased 'search-and-capture' mechanism. Here, we develop a model of a random walk in a drift field to test the nature of the bias and the spatio-temporal dynamics of the searc...

متن کامل

Cortical Dynein Controls Microtubule Dynamics to Generate Pulling Forces that Position Microtubule Asters

Dynein at the cortex contributes to microtubule-based positioning processes such as spindle positioning during embryonic cell division and centrosome positioning during fibroblast migration. To investigate how cortical dynein interacts with microtubule ends to generate force and how this functional association impacts positioning, we have reconstituted the 'cortical' interaction between dynein ...

متن کامل

Nonlocal mechanism of self-organization and centering of microtubule asters.

Fragments of fish melanophore cells can form and center aggregates of pigment granules by dynein-motor-driven transport along a self-organized radial array of microtubules (MTs). We present a quantitative model that describes pigment aggregation and MT-aster self-organization and the subsequent centering of both structures. The model is based on the observations that MTs are immobile and treadm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 117 Pt 8  شماره 

صفحات  -

تاریخ انتشار 2004